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Abstract
The generalized circular ensemble, which specifies a spectrum singularity in
random matrix theory, is equivalent to the Cauchy ensemble via a stereographic
projection. The Cauchy weight function is classical, and as such the n-point
distribution function in the cases of orthogonal and symplectic symmetry have
expressions in terms of quaternion determinants with elements given in an
explicit form suitable for asymptotic analysis. The asymptotic analysis is
undertaken in the neighbourhood of the spectrum singularity in both cases, and
it is shown that each quaternion determinant is specified by a single function
involving Bessel functions.

PACS numbers: 05.45.-a, 02.10.Yn, 02.30.Gp, 02.40.-k

1. Introduction

Random matrix ensembles specified by the eigenvalue probability density function (PDF)
proportional to

N∏
j=1

e−cx2
j x

χ

j

p∏
k=1

(x2
j + m2

k)
∏

1�j<k�N

|xk − xj |β (1.1)

occur in statistical studies of QCD in three dimensions [16]. The mk are masses, the parameter
c determines the scale while χ = 0, 1 or 2 depending on the parity of p and β. The latter
parameter takes on the values β = 1 (orthogonal symmetry), β = 2 (unitary symmetry) or
β = 4 (symplectic symmetry). For finite N , the general n-point distribution of (1.1) in the
orthogonal and symplectic cases has recently been computed in terms of Pfaffians by Nagao
and Nishigaki [13]. Also considered were various N → ∞ scaled limits. A different approach
to this problem has been presented by Hilmoine and Niclasen [9], in which formulae for the
finite N n-point distribution function were given in the massless case mk = 0 (k = 1, . . . , p).
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Subsequently, Abild-Pedersen and Vernizzi [1] have extended the methods of [9] to the massive
case.

In the massless case with χ even, the PDF (1.1) has the form

1

C

N∏
j=1

e−cx2
j |xj |βa

∏
1�j<k�N

|xk − xj |β. (1.2)

Note that with a = 1 this has the interpretation as a Gaussian random matrix ensemble
conditioned so that there is a zero eigenvalue. Similarly, for general a ∈ Z+, (1.2) gives the
(renormalized) PDF for the Gaussian random matrix ensemble with an a fold degeneracy at
the origin. For this reason we will refer to the neighbourhood of x = 0 in the ensemble (1.2)
as the neighbourhood of the spectrum singularity. The n-point distribution function of (1.2)
in the unitary symmetry case (β = 2) has been computed by Nagao and Slevin [14], as has
the N → ∞ scaled limit of the spectrum singularity in the neighbourhood of the spectrum
singularity. The latter is given by

ρs.s.
n (x1, . . . , xn) = det

[
Ks.s.(xj , xk)

]
j,k=1,...,n

(1.3)

Ks.s.(x, y) := (πx)1/2(πy)1/2

(
Ja+1/2(πx)Ja−1/2(πy) − Ja+1/2(πy)Ja−1/2(πx)

)
2(x − y)

(1.4)

which is valid for all values of x1, . . . , xn in the case a a non-negative integer, while it is valid
for x1, . . . , xn all positive otherwise.

The objective of this paper is to compute the scaled limit in the neighbourhood of the
spectrum singularity of the n-point distribution corresponding to (1.2) in the orthogonal and
symplectic cases. This task was left unsolved in [9], as the finite N results therein were
not amenable to asymptotic analysis. Also, the results of [13] for the scaled N → ∞ limit
of (1.1) with mk = 0 gives formulae more complicated (involving Pfaffians whose dimension
is proportional to a) and less general (requiring a to be twice a non-negative integer in the case
β = 1, and a to be a non-negative integer or half integer in the case β = 4) than those to be
presented here.

The difficulties faced in the calculations of [9] can be understood as resulting from the
non-classical nature of the weight function

w(x) = e−cx2 |x|βa (1.5)

in (1.2). We recall [2] that a weight function w(x) is called classical if its logarithmic derivative,
written in the form

d

dx
log w(x) = − g(x)

f (x)
(1.6)

is such that f and g are polynomials with

degree f � 2 degree g � 1. (1.7)

In the case of the weight (1.5) the formula (1.6) holds with degree g = 2 for a �= 0. Although
the n-point distribution for general matrix ensembles with orthogonal and symplectic symmetry
can be expressed as a quaternion determinant, only in the classical cases can the elements of
the quaternion determinant be written in an explicit form suitable for asymptotic analysis [2].

We avoid the complications inherent with the non-classical weight function (1.2) by a
combination of two ideas. The first is to notice that the scaled limit of the ensemble (1.2) in
the neighbourhood of the spectrum singularity at x = 0 will be identical to the scaled limit of
the PDF

1

C

N∏
j=1

|1 − eiθj |βa
∏

1�j<k�N

|eiθk − eiθj |β (1.8)
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in the neighbourhood of the spectrum singularity at θ = 0. In the special case β = 2 this has
been checked by explicit calculation [12], while its validity for general β is expected because
both PDFs are identical in the neighbourhood of the respective spectrum singularities. The
second idea is to transform (1.8) from an eigenvalue PDF on the circle to an eigenvalue PDF
on the line via the stereographic projection

eiθj = 1 − ixj

1 + ixj

. (1.9)

This shows
N∏

j=1

|1 − eiθj |βa
∏

1�j<k�N

|eiθk − eiθj |β dθ1 · · · dθN

∝
N∏

j=1

(1 + x2
j )−β(N+a−1)/2−1

∏
1�j<k�N

|xk − xj |β dx1 · · · dxN . (1.10)

Now the weight function occurring on the right-hand side of (1.10) has the form

w(x) = (1 + x2)−µ (1.11)

which defines the Cauchy weight. Written in the form (1.6) it gives

g(x) = 2µx f (x) = 1 + x2.

These polynomials have the property (1.7) so the Cauchy weight is classical. Consequently
the general formulae of [2] are applicable, and it is these formulae which allow the scaled
N → ∞ limit to be computed.

We will proceed by revising the general formulae of [2] for the n-point distribution
ρ

Cy
n (x1, . . . , xn) in the orthogonal and symplectic ensembles with Cauchy weight. This is

done in section 2. In section 3 we use the fact that according to the transformation (1.9), and
with θj 
→ 2πXj/N in (1.8) (the mean density in the variable Xj is unity by this scaling), the
n-point distribution ρGC

n (X1, . . . , Xn) in the generalized circular ensemble is related to that in
the Cauchy ensemble by

ρGC
n (X1, . . . , Xn) =

n∏
j=1

4π

|1 + zj |2N ρCy
n (x1, . . . , xn)

∣∣∣∣
xj =i(1−zj )/(1+zj )

µ=β(N+a−1)/2+1

(1.12)

where

zj := e2π iXj /N (1.13)

to then compute the scaled N → ∞ limit in the neighbourhood of the spectrum singularity.
The latter occurs at zj = −1 so we make the replacements Xj 
→ Xj + N/2 or equivalently
zj 
→ −zj and rewrite (1.12) as

ρGC
n (X1, . . . , Xn) =

n∏
j=1

4π

|1 − zj |2N ρCy
n (x1, . . . , xn)

∣∣∣∣
xj =i(1+zj )/(1−zj )

µ=β(N+a−1)/2+1

(1.14)

with our objective being to compute the N → ∞ limit, with Xj fixed, of the right-hand side of
this expression. In both the orthogonal and symplectic symmetry cases ρCG

n is evaluated as a
n×n quaternion determinant. This is given by (3.34) in the case of orthogonal symmetry, with
Ss.s.

1 therein specified by (3.26) or equivalently (3.30), while in the case of symplectic symmetry
it is given by (3.47) with Ss.s.

4 therein specified by (3.44) (the quantity Ks.s. in (3.26), (3.30)
and (3.44) is specified by (1.4)). Properties of ρGC

n are discussed in section 4. These include
the relationship with the distributions for the Dyson circular ensembles, the connection with
the soft edge distributions in a scaled a → ∞ limit, and a sum rule obeyed by the density.
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2. n-point distribution for classical ensembles

2.1. Orthogonal symmetry

The eigenvalue PDF for a matrix ensemble with orthogonal symmetry has the general form

p1(x1, . . . , xN) := 1

ẐN

N∏
j=1

w1(xj )
∏

1�j<k�N

|xk − xj |

ẐN :=
∫ ∞

−∞
dx1 w1(x1) · · ·

∫ ∞

−∞
dxN w1(xN)

∏
1�j<k�N

|xk − xj |.

The weights

w1(x) =




e−x2/2 Gaussian
x(a−1)/2e−x/2 (x > 0) Laguerre
(1 − x)(a−1)/2(1 + x)(b−1)/2 (−1 < x < 1) Jacobi
(1 + x2)−(α+1)/2 Cauchy

(2.1)

specify the classical weights. In the classical cases the n-point distribution function

ρn(x1, . . . , xn) = N(N − 1) · · · (N − n + 1)

∫ ∞

−∞
dxn+1 · · ·

∫ ∞

−∞
dxN p1(x1, . . . , xN) (2.2)

can be expressed in terms of the monic orthogonal polynomials {pk(x)}k=0,1,... associated with
the weight functions

w2(x) =




e−x2
Gaussian

xae−x (x > 0) Laguerre
(1 − x)a(1 + x)b (−1 < x < 1) Jacobi
(1 + x2)−α Cauchy

(2.3)

and their corresponding normalizations. For future reference we note that in the Cauchy
case the monic orthogonal polynomials, p

Cy
k (x) say, are given in terms of the monic Jacobi

polynomials, pJ
k(x) say, by (see e.g. [18])

p
Cy
k (x) := i−kpJ

k(x)
∣∣
a=b=−α

k < α (2.4)

(the bound on k is required because the Cauchy weight only has a finite number of well defined
moments). Also, the normalization associated with the polynomials (2.4), (pk, pk)

Cy
2 say, has

the explicit form (see e.g. [18])

(pk, pk)
Cy
2 = π2−2(α−k−1) %(k + 1)%(2α − 2k)%(2α − 1 − 2k)

%(2α − k)(%(α − k))2
. (2.5)

In the classical cases the n-point distribution function is expressed in terms of a quaternion
determinant formula [2]

ρn(x1, . . . , xn) = qdet[f1(xj , xk)]j,k=1,...,n

f1(x, y) =
[

S1(x, y) I1(x, y)

D1(x, y) S1(y, x)

]
(2.6)

where with

Pn(x, y) := (
w2(x)w2(y)

)1/2
n−1∑
k=0

pk(x)pk(y)

(pk, pk)2
(2.7)
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we have

S1(x, y) = (w2(x))1/2

w1(x)

w1(y)

(w2(y))1/2
PN−1(x, y) + γN−2w1(y)pN−1(y)

× 1
2

∫ ∞

−∞
sgn(x − t)pN−2(t)w1(t) dt (2.8)

and

I1(x, y) = −
∫ y

x

S1(x, z) dz − 1
2 sgn(x − y) D1(x, y) = ∂

∂x
S1(x, y). (2.9)

In (2.8) it is assumed N is even (an analogous formula is known for N odd, but since our
interest is in the limit N → ∞ the N even case suffices) and

γk := 1

(pk, pk)2




1 Hermite
1
2 Laguerre
1
2 (2k + 2 + a + b) Jacobi

α − 1 − k Cauchy.

(2.10)

2.2. Symplectic symmetry

In the symplectic case, the eigenvalue PDF has the general form

p4(x1, . . . , xN) := 1

ẐN

N∏
j=1

w4(xj )
∏

1�j<k�N

|xk − xj |4

ẐN :=
∫ ∞

−∞
dx1 w4(x1) · · ·

∫ ∞

−∞
dxN w4(xN)

∏
1�j<k�N

|xk − xj |4

and the classical weights are specified by

w4(x) =




e−x2
Gaussian

xa+1e−x (x > 0) Laguerre
(1 − x)a+1(1 + x)b+1 (−1 < x < 1) Jacobi
(1 + x2)−α+1 Cauchy.

(2.11)

The n-point distribution function is specified by (2.2) with p4 replacing p1.
In the classical cases the n-point distribution function has an evaluation in terms of a

quaternion determinant analogous to (2.6). Explicitly [2]

ρn(x1, . . . , xn) = qdet[f4(xj , xk)]j,k=1,...,n

f4(x, y) =
[

S4(x, y) I4(x, y)

D4(x, y) S4(y, x)

]
(2.12)

where

S4(x, y) = 1

2

(
w2(y)

w4(y)

)1/2 (
w4(x)

w2(x)

)1/2

P2N(x, y)

−1

2
γ2N−1

w2(y)

(w4(y))1/2
p2N(y)

∫ ∞

x

p2N−1(t)
w2(t)

(w4(t))1/2
dt (2.13)

and

I4(x, y) = −
∫ y

x

S4(x, y ′) dy ′ D4(x, y) = ∂

∂x
S4(x, y). (2.14)
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3. Scaled N → ∞ limit about the spectrum singularity

The task now is to compute the N → ∞ limit of (1.14) with ρk given by (2.6) (orthogonal case)
and (2.12) (symplectic case), and the quantities therein specified as required for the Cauchy
weight. In both cases we are to substitute xj = i(1+zj )/(1−zj ) = − cot πXj/N . To analyse
this limit the first task is to express the polynomial p

Cy
k (x), specified in terms of a monic Jacobi

polynomial by (2.4), in a suitable form. For this purpose we use the formula [4]

P (α,β)
n (x) ∝

(
x − 1

2

)n

2F1

(
−n, −n − α; −2n − α − β; − 2

x − 1

)

where 2F1 denotes the Gauss hypergeometric function. Substituting in (2.4) gives

p
Cy
k

(
i

1 + z

1 − z

)
= i−k

(
− 2

1 − z

)k

2F1(−k, −k + α; −2k + 2α; 1 − z) (3.1)

where use has been make of the fact that by the requirement that pCy
k (z) be monic, the coefficient

of 2i/(1−z) on the right-hand side must be unity. We note too that the summation (2.7) defining
Pn can be summed for general monic orthogonal polynomials according to the Christoffel–
Darboux formula. This gives [15]

Pn(x, y) = (w2(x)w2(y))1/2 pn(x)pn−1(y) − pn(y)pn−1(x)

(pn−1, pn−1)2(x − y)
. (3.2)

To proceed further the orthogonal and symplectic cases must be treated separately.

3.1. Orthogonal symmetry

In (2.1) the Cauchy weight function is specified as w1(x) = (1 + x2)−(α+1)/2. Comparing
with (1.10) in the case β = 1 shows we require

α = N + a. (3.3)

With α so specified, consider now the computation of the scaled form of

PN−1

(
i

1 + z

1 − z
, i

1 + w

1 − w

) ∣∣∣∣
α=N+a

z := e2π iX/N w := e2π iY/N

which from (3.2), (3.1) and (3.3) requires the scaled form of

p
Cy
N−1

(
i

1 + z

1 − z

) ∣∣∣∣
α=N+a

= i−(N−1)

(
− 2

1 − z

)N−1

2F1(−(N − 1), a + 1; 2a + 2; 1 − z)

p
Cy
N−2

(
i

1 + z

1 − z

) ∣∣∣∣
α=N+a

= i−(N−2)

(
− 2

1 − z

)N−2

2F1(−(N − 2), a + 2; 2a + 4; 1 − z).

The scaled form of the latter follow from the formulae [4]

lim
n→∞ 2F1(−n, b; c; t/n) = 1F1(b; c; −t) (3.4)

1F1(a; 2a; 2ix) = %(a + 1/2)(x/2)−(a−1/2)eixJa−1/2(x) (3.5)

which give

p
Cy
N−1

(
i

1 + z

1 − z

) ∣∣∣∣
α=N+a

∼ (−1)N−1

(sin πX/N)N−1
%(a + 3/2)(πX/2)−(a+1/2)Ja+1/2(πX) (3.6)

p
Cy
N−1

(
i

1 + z

1 − z

) ∣∣∣∣
α=N+a

∼ (−1)N−2

(sin πX/N)N−2
%(a + 5/2)(πX/2)−(a+3/2)Ja+3/2(πX). (3.7)
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It follows from these results and the simple formula

1

x − y
∼ π

N

XY

X − Y
(3.8)

that

p
Cy
N−1(x)p

Cy
N−2(y) − p

Cy
N−1(y)p

Cy
N−2(x)

x − y

∼ − %(a + 3/2)%(a + 5/2)

(πX/N)N−1(πY/N)N−1
(πX/2)−(a+1/2)(πY/2)−(a+1/2)

×
(

2

N

)
XY

{Ja+1/2(πX)Ja+3/2(πY ) − Ja+1/2(πY )Ja+3/2(πX)}
X − Y

.

Also required is the normalization in (3.2) in the case n = N − 1, which according to (2.5) is
given by

(pN−2, pN−2)
Cy
2

∣∣∣
α=N+a

= π2−2(a+1) %(N − 1)%(2a + 4)%(2a + 3)

%(N + 2a + 2)(%(a + 2))2
.

Noting from the duplication formula for the gamma function that

%(a + 3/2)%(a + 5/2) = 2−4a−5π
%(2a + 3)%(2a + 4)

(%(a + 2))2
(3.9)

we therefore have

%(a + 3/2)%(a + 5/2)

(pN−2, pN−2)
Cy
2

∣∣∣
α=N+a

= 2−2a−3 %(N + 2a + 2)

%(N − 1)
∼ 2−2a−3N2a+3. (3.10)

Finally we note that(
w2

(
i

1 + z

1 − z

)
w2

(
i

1 + w

1 − w

))1/2 ∣∣∣
α=N+a

=
(

sin
πX

N

)N+a (
sin

πY

N

)N+a

(w2(x))1/2w1(y)

w1(x)(w2(x))1/2
∼

∣∣∣∣ Y

X

∣∣∣∣ .

(3.11)

Combining the above results shows

(w2(x))1/2w1(y)

w1(x)(w2(x))1/2
PN−1(x, y) ∼ π

N
Y 2Ks.s.(X, Y )

∣∣∣∣
a 
→a+1

(3.12)

where Ks.s. is specified by (1.4).
We turn our attention to the calculation of the scaled form of the second term on the right-

hand side of (2.8), considering each factor in turn. Now, according to (2.10), (3.3) and (3.10),

γN−2 = a + 1

(pN−2, pN−2)
Cy
2

∼ (a + 1)
2−2a−3N2a+3

%(a + 3/2)%(a + 5/2)
. (3.13)

Recalling (2.1) and (3.3), and setting

y = i
1 − w

1 + w
w := e2π iY/N

we see that

w1(y) = (1 + y2)−(N+a+1)/2 ∼
(

πY

N

)N+a+1

.
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The large-N behaviour of pN−1(y) is given by (3.6) with X replaced by Y . Regarding the
integral we write∫ ∞

−∞
sgn(x − t)p

Cy
N−2(t)w1(t) dt = 2

∫ ∞

−x

p
Cy
N−2(t)w1(t) dt −

∫ ∞

−∞
p

Cy
N−2(t)w1(t) dt. (3.14)

But we know from [5] that for the classical weights (2.3), with N even,∫ ∞

−∞
p

Cy
N−2(t)w1(t) dt =

( ∫ ∞

−∞
w1(t) dt

) N/2−2∏
j=0

γ2j

γ2j+1
(3.15)

where γj are given by (2.10). For the first factor on the right-hand side of (3.15) we use the
definite integral∫ ∞

−∞

x2q

(1 + x2)α
dx = %(1/2 + q)%(α − q − 1/2)

%(α)
(3.16)

(which is equivalent to the Euler beta integral [17]) to deduce that∫ ∞

−∞
w1(t) dt = %(1/2)%((N + a)/2)

%((N + a + 1)/2)
∼ π1/2(N/2)−1/2. (3.17)

For the second factor, we note from (2.10), (3.3) and (2.5) that
γ2j

γ2j+1
= N + a − 1 − 2j

N + a − 2 − 2j

(2j + 1)(2(N + a) − 2j − 1)

(2(N + a) − 4j − 1)(2(N + a) − 4j − 3)
(3.18)

and from this we deduce
N/2−1∏

j=0

γ2j

γ2j+1
∼ (

N/2
)−1/2 1

(2N)a+1

%(a/2 + 2)%(2a + 4)

%(a/2 + 3/2)%(a + 3)
. (3.19)

Consequently ∫ ∞

−∞
p

Cy
N−2(t)w1(t) dt ∼ π1/2 2−a

Na+2

%(a/2 + 2)%(2a + 4)

%(a/2 + 3/2)%(a + 3)
. (3.20)

It remains to compute the scaled form of the first integral in (3.14). Now∫ ∞

−x

p
Cy
N−2(t)w1(t) dt =

∫ ∞

cot πX/N

p
Cy
N−2(t)w1(t) dt

= π

N

∫ X

0
(sin πs/N)α−1p

Cy
N−2(cot πs/N) ds (3.21)

where the second equality follows from the substitution t = cot πs/N . Substituting for p
Cy
N−2

in (3.21) according to (3.7) and recalling (3.3) shows∫ ∞

−x

p
Cy
N−2(t)w1(t) dt ∼ π

Na+2
(−1)N−2%(a + 5/2)2a+3/2

∫ X

0
(πs)−1/2Ja+3/2(πs) ds. (3.22)

Making use of the identity

%(a + 5/2) = 2−2(a+2)π1/2 %(2a + 5)

%(a + 3)

which like (3.9) is a consequence of the duplication formula for the gamma function, we see
from (3.20) and (3.22) substituted in (3.14) that∫ ∞

−∞
sgn(x − t)p

Cy
N−2(t)w1(t) dt ∼ − 2a+2

Na+2

%(a/2 + 1)%(a + 5/2)

%(a/2 + 3/2)

×
(

1 − 21/2 %(a/2 + 3/2)

%(a/2 + 1)

∫ πX

0
s−1/2Ja+3/2(s) ds

)
. (3.23)
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Combining the above results gives that

γN−2w1(y)p
Cy
N−1(y) 1

2

∫ ∞

−∞
sgn(x − t)p

Cy
N−2(t)w1(t) dt

∼
(

πY 2

N

)
π

%(a/2 + 1)

%(a/2 + 1/2)

Ja+1/2(πY )

(2πY)1/2

×
(

1 − 21/2 %(a/2 + 3/2)

%(a/2 + 1)

∫ πX

0
s−1/2Ja+3/2(s) ds

)
. (3.24)

Adding (3.12) to this shows

S1

(
i

1 + z

1 − z
, i

1 + w

1 − w

) ∣∣∣∣
α=N+a

∼ πY 2

N
Ss.s.

1 (X, Y ) (3.25)

where

Ss.s.
1 (X, Y ) = Ks.s.(X, Y )

∣∣∣
a 
→a+1

+ π
%(a/2 + 1)

%(a/2 + 1/2)

Ja+1/2(πY )

(2πY)1/2

×
(

1 − 21/2 %(a/2 + 3/2)

%(a/2 + 1)

∫ πX

0
s−1/2Ja+3/2(s) ds

)
. (3.26)

We note that for a > 0, Ss.s.
1 can be written in a form analogous to (3.26), only involving Ks.s.

without the replacement a 
→ a + 1. The first step is to use the recurrence

zJα−1(z) − 2αJα(z) + zJα+1(z) = 0

in (1.4) to deduce

Ks.s.(X, Y )
∣∣
a 
→a+1 = Ks.s.(X, Y ) − (a + 1/2)

Ja+1/2(πx)Ja+1/2(πy)

(πx)1/2(πy)1/2
. (3.27)

The second step is to use the identity

−z−νJν+1(z) = d

dz
{z−νJν(z)} (3.28)

to rewrite the integral in (3.26) as

−
∫ πX

0
sa d

ds
{s−a−1/2Ja+1/2(s)} ds = −(πX)−1/2Ja+1/2(πX) + a

∫ πX

0
s−3/2Ja+1/2(s) ds

a > 0. (3.29)

Substituting (3.27) and (3.29) in (3.26) shows that for a > 0 we can write

Ss.s.
1 (X, Y ) = Ks.s.(X, Y ) + π

%(a/2 + 1)

%(a/2 + 1/2)

Ja+1/2(πY )

(2πY)1/2

×
(

1 − 23/2 %(a/2 + 3/2)

%(a/2)

∫ πX

0
s−3/2Ja+1/2(s) ds

)
. (3.30)

With the result (3.25) established, we see from (2.9) that

I1

(
i

1 + z

1 − z
, i

1 + w

1 − w

) ∣∣∣∣
α=N+a

= −
∫ − cot πY/N

− cot πX/N

S1(− cot πX/N, z) dz − 1

2
sgn(X − Y )

= − π

N

∫ Y

X

1

sin2 πs/N
S1(− cot πX/N, − cot πs/N) ds − 1

2
sgn(X − Y )

∼ −
∫ Y

X

S1(X, s) ds − 1
2 sgn(X − Y ) (3.31)
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where the second equality follows from the change of variable z = − cot πs/N , and

D1

(
i

1 + z

1 − z
, i

1 + w

1 − w

) ∣∣∣∣
α=N+a

= − ∂

∂ cot πX/N
S1

(
i

1 + z

1 − z
, i

1 + w

1 − w

)

∼
(

πXY

N

)2
∂

∂X
Ss.s.

1 (X, Y ). (3.32)

The results (3.26)–(3.32) imply that the scaled form of the n-point distribution (2.6) in the
Cauchy ensemble with orthogonal symmetry is given by

ρCy
n (X1, . . . , Xn) ∼

( π

N

)n n∏
j=1

X2
j

×qdet

[
Ss.s.

1 (Xj , Xk) − ∫ Xk

Xj
Ss.s.

1 (Xj , u) du − 1
2 sgn(Xj − Xk)

∂
∂Xj

Ss.s.
1 (Xj , Xk) Ss.s.

1 (Xk, Xj )

]
j,k=1,...,n

(3.33)

where a factor πX2
k/N has been removed from each odd numbered column and a factor of

πX2
j /N removed from each even numbered row. Substituting this result in (1.14) gives that

for the circular ensemble with orthogonal symmetry the n-point distribution function in the
neighbourhood of the spectrum singularity is given by

ρGC
n (X1, . . . , Xn)

= qdet

[
Ss.s.

1 (Xj , Xk) − ∫ Xk

Xj
Ss.s.

1 (Xj , u) du − 1
2 sgn(Xj − Xk)

∂
∂Xj

Ss.s.
1 (Xj , Xk) Ss.s.

1 (Xk, Xj )

]
j,k=1,...,n

.

(3.34)

3.2. Symplectic symmetry

Comparing the definition of the Cauchy weight in (2.11) with the weight in (1.10) evaluated
at β = 4 shows we require

α = 2(N + a). (3.35)

We now proceed in an analogous fashion to the analysis of the N → ∞ scaled limit in the
orthogonal case and first consider the scaled limit of the term involving

P2N

(
i

1 + z

1 − z
, i

1 + w

1 − w

) ∣∣∣∣
α=2(N+a)

(3.36)

in (2.13). The asymptotic form of the polynomials p
Cy
2N and p

Cy
2N−1 occurring in the summation

formula (3.2) for (3.36) is deduced from (3.1) and (3.4) to be given by

p
Cy
2N

(
i
1 − z

1 + z

) ∣∣∣∣
α=2(N+a)

∼ 1

(sin πX/N)2N
%(2a + 1/2)(πX)−(2a−1/2)J2a−1/2(2πX) (3.37)

p
Cy
2N−1

(
i
1 − z

1 + z

) ∣∣∣∣
α=2(N+a)

∼ − 1

(sin πX/N)2N−1
%(2a + 3/2)(πX)−(2a+1/2)J2a+1/2(2πX)

(3.38)

while from (2.5) the normalization in the summation formula is such that

1

(p2N−1, p2N−1)
Cy
2

∣∣∣∣
α=2(N+a)

∼ 1

π
22a(2N)4a+1 (%(2a + 1))2

%(4a + 1)%(4a + 2)

= N4a+1 1

%(2a + 3/2)%(2a + 1/2)
(3.39)
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where the final equality follows upon use of the duplication formula for the gamma function.
We also have

(w2(x)w2(y))1/2
∣∣∣
α=2(N+a)

= (sin πX/N)2(N+a)(sin πY/N)2(N+a)

while after noting that for the classical weights(
w2(y)

w4(y)

)1/2 (
w4(x)

w2(x)

)1/2

= (w2(x))1/2

w1(x)

w1(y)

(w2(y))1/2

we see that the asymptotic form is given by the second formula in (3.11), and we can again
use (3.8). Combining these results shows

1

2

(
w2(y)

w4(y)

)1/2 (
w4(x)

w2(x)

)1/2

P2N(x, y) ∼ πY 2

N
Ks.s.(2X, 2Y )

∣∣∣∣
a 
→2a

. (3.40)

The second term in (2.13), which has an analogous structure to the second term in (2.8), consists
of a number of factors. We proceed to compute the scaled N → ∞ behaviour of each factor
in turn, as we did for the second term in (2.8). First we note from (2.10), (3.35) and (3.39) that

γ2N−1 ∼ aN4a+1

%(2a + 3/2)%(2a + 1/2)
.

Next, according to (2.3) and (2.11)

w2(y)

(w4(y))1/2
= (1 + y2)−(N+a+1/2) ∼

(
πY

N

)2(N+a)+1

(3.41)

while the large-N behaviour of p2N(y) is given by (3.37) with X 
→ Y . To analyse the integral
in (2.13) we first note∫ ∞

x

w2(t)

(w4(t))1/2
p

Cy
2N−1(t) dt =

( ∫ ∞

−∞
−

∫ x

−∞

)
w2(t)

(w4(t))1/2
p

Cy
2N−1(t) dt

= −
∫ x

−∞

w2(t)

(w4(t))1/2
p

Cy
2N−1(t) dt

=
∫ ∞

cot πX/N

p
Cy
2N−1(t)

dt

(1 + t2)(N+a+1/2)
(3.42)

where in going from the first equality to the second we have used the fact that the definite
integral vanishes since the integrand is odd. Changing variables t = cot πs/N , substituting
for p

Cy
2N−1 according to (3.38) and making use of (3.41) shows

∫ ∞

x

w2(t)

(w4(t))1/2
p

Cy
2N−1(t) dt ∼ %(2a + 3/2)

π1/2N2a+1

∫ πX

0
s−1/2J2a+1/2(2s) ds.

Multiplying the above results to form the second term in (2.8), and simplifying using the
identity

%(2a + 3/2)%(2a + 1/2) = 2−8a−1π%(4a + 1)%(4a + 2)

(%(2a + 1))2

shows
1

2
γ2N−1

w2(y)

(w4(y))1/2
p

Cy
2N(y)

∫ ∞

x

w2(t)

(w4(t))1/2
p

Cy
2N−1(t) dt

∼ a

N
(πY )3/2J2a−1/2(2πY)

∫ πX

0
s−1/2J2a+1/2(2s) ds.
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Adding this result to (3.40) as required by (2.8) we conclude

S4

(
i

1 + z

1 − z
, i

1 + w

1 − w

) ∣∣∣∣
α=2(N+a)

∼ πY 2

N
Ss.s.

4 (X, Y ) (3.43)

where

Ss.s.
4 (X, Y ) := Ks.s.(2X, 2Y )

∣∣
a 
→2a

− aπ
J2a−1/2(2πY)

(πY )1/2

∫ πX

0
s−1/2J2a+1/2(2s) ds. (3.44)

Recalling the definitions (2.14), we see from the asymptotic formula (3.43) that

I4

(
i

1 + z

1 − z
, i

1 + w

1 − w

) ∣∣∣∣
α=2(N+a)

∼ −
∫ Y

X

Ss.s.
4 (X, u) du

D4

(
i

1 + z

1 − z
, i

1 + w

1 − w

)
∼

(
πXY

N

)2
∂

∂X
Ss.s.

4 (X, Y )

(3.45)

(cf (3.31) and (3.32)).
The results (3.43) and (3.45) substituted in (2.6) show that the scaled form of the n-point

distribution for the Cauchy ensemble with symplectic symmetry is given by

ρCy
n (X1, . . . , Xn) ∼

( π

N

)n n∏
j=1

X2
j qdet

[
Ss.s.

4 (Xj , Xk) − ∫ Xk

Xj
Ss.s.

4 (Xj , u) du
∂

∂Xj
Ss.s.

4 (Xj , Xk) Ss.s.
4 (Xk, Xj )

]
j,k=1,...,n

(3.46)

where as in the derivation of (3.33) a factor πX2
k/N has been removed from each odd numbered

column and a factor of πX2
j /N removed from each even numbered row. Substituting (3.46)

in (1.14) gives that for the circular ensemble with orthogonal symmetry the n-point distribution
function in the neighbourhood of the spectrum singularity is given by

ρGC
n (X1, . . . , Xn) = qdet

[
Ss.s.

4 (Xj , Xk) − ∫ Xk

Xj
Ss.s.

4 (Xj , u) du
∂

∂Xj
Ss.s.

4 (Xj , Xk) Ss.s.
4 (Xk, Xj )

]
j,k=1,...,n

. (3.47)

4. Properties of ρGC
n

In the case a = 0 of the ensemble (1.8)—which corresponds to the Dyson circular ensemble—
the scaled n-point distributions for β = 1, 2 and 4 were computed by Dyson [3] in his
pioneering paper on quaternion determinants in random matrix theory. For β = 1 they are
given by (3.34) with Ss.s.

1 replaced by

Sbulk
1 (X, Y ) := sin π(X − Y )

π(X − Y )
(4.1)

while for β = 4 they are given by (3.47) with Ss.s.
4 replaced by

Sbulk
4 (X, Y ) := sin 2π(X − Y )

2π(X − Y )
. (4.2)

Thus it must be that with a = 0, Ss.s.
1 reduces to (4.1) while Ss.s.

4 reduces to (4.2). According
to (3.30), for β = 1,

Ss.s
1 (X, Y )

∣∣
a=0 = Ks.s.(X, Y )

∣∣
a=0 +

π

%(1/2)

Ja+1/2(πY )

(2πY)1/2

(
1 − lim

a→0
a

∫ πX

0
s1−a ds

)

= Ks.s.(X, Y )
∣∣
a=0 (4.3)
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where in obtaining the first equality use has been made of the facts that 1/%(a/2) ∼ a/2 as
a → 0, and Ja+1/2(s) ∼ (2s)a/%(a + 1/2) as s → 0, while for β = 4 (3.44) gives

Sbulk
4 (X, Y )

∣∣
a=0 = K(2X, 2Y )

∣∣
a=0. (4.4)

But it follows immediately from the definition (1.4) and the Bessel function formulae

J1/2(x) =
(

2

πx

)1/2

sin x J−1/2(x) =
(

2

πx

)1/2

cos x (4.5)

that

Ks.s.(X, Y )
∣∣
a=0 = sin π(X − Y )

π(X − Y )
(4.6)

so indeed

Ss.s.
1 (X, Y )

∣∣
a=0 = Sbulk

1 (X, Y ) Ss.s.
4 (X, Y )

∣∣
a=0 = Sbulk

4 (X, Y ). (4.7)

Also related to the Dyson circular ensemble is the case a = 1 of the generalized circular
ensemble. Thus the latter corresponds to fixing an eigenvalue at θ = 0 in the former, so we
must have

ρbulk
n+1 (X1, . . . , Xn, 0) = ρs.s.

n (X1, . . . , Xn)
∣∣
a=1 (4.8)

(this identity was first noted in [7] and checked explicitly for β = 2 using (1.3)). In the
case n = 1, according to (3.34) and (3.47) the right-hand side of this expression is given
by Ss.s.

β (X1, X1)
∣∣
a=1 for β = 1 and 4 respectively. Recalling the known analytic form of

ρbulk
2 (X1, 0) [11] for these values of β we must therefore have

Ss.s.
1 (x, x)

∣∣
a=1 = 1 − sin2 πx

(πx)2
+

1

π

(
d

dx

sin πx

πx

) (
− π

2
sgn x +

∫ πx

0

sin t

t
dt

)
(4.9)

Ss.s.
4 (x, x)

∣∣
a=1 = 1 − sin2 2πx

(2πx)2
+

1

2π

(
d

dx

sin 2πx

2πx

) ∫ 2πx

0

sin t

t
dt. (4.10)

Let us check the validity of (4.10) using (3.44) ((4.9) can be checked using similar working
starting with (3.26)). Now, it follows from (3.27) that

Ks.s.(2X, 2X)
∣∣
a=2 = Ks.s.(2X, 2X)

∣∣
a=0 − 3(J3/2(2πX))2

4πX
− (J1/2(2πX))2

4πX

= 1 − sin2 2πX

(2πX)2
− 3(J3/2(2πX))2

4πX
(4.11)

where in obtaining the second equality use has been made of (4.5) and (4.6). Also, integrating
by parts and using the Bessel function identity

d

ds
Jα(s) = Jα−1(s) − α

s
Jα(s) (4.12)

with α = 3/2 shows∫ u

0
s−1/2J5/2(s) ds = −3J3/2(u)

2u
+ 2

∫ u

0

J1/2(s)

s1/2
ds.

Substituting this result and (4.11) in (3.44) gives

Ss.s.
4 (x, x)

∣∣
a=1 = 1 − sin2 2πx

(2πx)2
− 2π

J3/2(2πx)

(2πx)1/2

∫ 2πx

0

J1/2(s)

s1/2
ds

which is seen to be identical to (4.10) after substituting for (2πx)−1/2J3/2(2πx) using (3.28),
and then substituting for J1/2 using (4.5).



7930 P J Forrester and T Nagao

Next we consider a scaled a → ∞ limit of (3.26) and (3.44). Here, analogous to the
situation with the hard edge distributions [6], we expect to connect to the corresponding soft
edge distributions. The latter are specified by (3.34) and (3.47) but with Ss.s.

1 and Ss.s.
4 replaced

by [6]

Ssoft
1 (X, Y ) = Ksoft(X, Y ) + 1

2 Ai(Y )

(
1 −

∫ ∞

X

Ai(t) dt

)
(4.13)

Ssoft
4 (X, Y ) = Ksoft(X, Y ) − 1

2 Ai(Y )

∫ ∞

X

Ai(t) dt (4.14)

where

Ksoft(X, Y ) = Ai(X)Ai′(Y ) − Ai(Y )Ai′(X)

X − Y

with Ai(x) denoting the Airy function. Now we know the Bessel function is related to the
Airy function via the asymptotic expansion

Ja(x) ∼
(

2

a

)1/3

Ai

(
21/3(a − x)

x1/3

)
(4.15)

valid for a and x large and such that the argument of the Airy function is of order one. Noting
from the Bessel function identity (4.12) that we can rewrite (1.4) as

1

π
Ks.s.

( x

π
,

y

π

)
= φ(x)yφ′(y) − φ(y)xφ′(x)

x − y
(4.16)

where

φ(x) :=
√

x

2
Ja+1/2(x)

we can check using (4.15) that

lim
a→∞ −

(a

2

)1/3 1

π
Ks.s.

(
1

π
(a − (a/2)1/3x),

1

π
(a − (a/2)1/3y)

)
= Ksoft(x, y). (4.17)

Use of (4.17) and further use of (4.15) in (3.26) and (3.44) then shows

lim
a→∞ −

(a

2

)1/3 1

π
Ss.s.

1

(
1

π
(a − (a/2)1/3x),

1

π
(a − (a/2)1/3y)

)
= Ssoft

1 (x, y) (4.18)

lim
a→∞ −

(a

2

)1/3 1

2π
Ss.s.

4

(
1

2π
(a − (a/2)1/3x),

1

2π
(a − (a/2)1/3y)

)
= Ssoft

4 (x, y) (4.19)

which are the required connection formulae.
Our last property to be considered is motivated by the fact that the PDFs (1.2) and (1.8)

have interpretations as being proportional to the Boltzmann factor of the one-component log-
gas on a line and circle respectively, with an impurity charge of strength a at the origin. A
log-gas is an example of a Coulomb system. In the thermodynamic limit the latter have the
neutrality property that the total excess charge density about a fixed charge will be equal and
opposite to that of the charge (see e.g. [10]). Now for a one-component log-gas with unit
positive charges the charge density is the same as the particle density. The neutrality property
at the fixed charge of strength a then implies the sum rule

2
∫ ∞

0

(
ρ1(x) − 1

)
dx = −a (4.20)
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(the factor of 2 comes from the symmetry of the charge excess about the origin, while we
subtract 1 from ρ1(x) since it is the unperturbed density). But ρ1(x) = Sβ(x, x) (β = 1, 2, 4
with S2 := Ks.s.) so we must have

2
∫ ∞

0

(
Sβ(x, x) − 1

)
dx = −a. (4.21)

We will use the exact expressions for Sβ(x, x) to verify (4.21) for each of the couplings
β = 1, 2, 4, starting with β = 2. For β = 2, we see by taking the limit y → x in (1.4) that

S2(x, x) = π2

2
x[J ′

a+(1/2)(πx)Ja−(1/2)(πx) − Ja+(1/2)(πx)J ′
a−(1/2)(πx)].

We make use of the Bessel function identities

πxJ ′
a+(1/2)(πx) = −(

a + 1
2

)
Ja+(1/2)(πx) + πxJa−(1/2)(πx)

πxJ ′
a−(1/2)(πx) = (

a − 1
2 )Ja−(1/2)(πx) − πxJa+(1/2)(πx)

to rewrite this expression as

S2(x, x) = −πaJa+(1/2)(πx)Ja−(1/2)(πx) +
π2

2
x
{(

Ja−(1/2)(πx)
)2

+
(
Ja+(1/2)(πx)

)2}
. (4.22)

Using the integration formula [4]∫ ∞

0
Jν(cx)Jν−1(cx) dx = 1

2c

we conclude from (4.22) that∫ ∞

0

(
S2(x, x) − 1

)
dx = −a

2
+

1

2

∫ ∞

0

(
x(Ja−(1/2)(x))2 + x(Ja+(1/2)(x))2 − 2

π

)
dx. (4.23)

Next we use the fact that∫ X

0
x
(
(Jν(x))2 + (Jν+1(x))2

)
dx = X2

2

(
(Jν(X))2 + (Jν+1(X))2

−Jν−1(X)Jν+1(X) − Jν(X)Jν+2(X)
)

and then employ the large-X asymptotic expansion of the Bessel function to conclude∫ X

0

(
x(Ja−(1/2)(x))2 + x(Ja+(1/2)(x))2 − 2

π

)
dx ∼

X→∞
O

(
1

X

)
.

The integral in (4.23) thus vanishes and so (4.21) is verified for β = 2.
With (4.21) established at β = 2, we see from (3.30) that the validity of (4.21) at β = 1

is equivalent to the integration formula∫ ∞

0
dt

Ja+1/2(t)

t1/2

(
1 − 23/2 %(a/2 + 3/2)

%(a/2)

∫ t

0
ds s−3/2Ja+1/2(s)

)
= 0. (4.24)

To verify (4.24) we make use of the definite integral [8]∫ ∞

0

Ja+1/2(t)

t1/2
dt = %(a/2 + 1/2)

21/2%(a/2 + 1)
(4.25)

to evaluate the first term, and change variables s 
→ ts in the second to rewrite it as

−23/2 %(a/2 + 3/2)

%(a/2)

∫ 1

0
ds

1

s3/2

( ∫ ∞

0
dt

1

t
Ja+1/2(t)Ja+1/2(ts)

)
. (4.26)

But for 0 < s < 1 [4],∫ ∞

0

1

t
Ja+1/2(t)Ja+1/2(ts) dt = sa+1/2

2a + 1
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so we see that (4.26) is equal to minus (4.25), thus verifying (4.24).
It remains to verify (4.21) in the case β = 4. Now we see from (3.44) that knowledge of

the validity of (4.21) at β = 2 means it suffices to verify the integration formula∫ ∞

0
dt

J2a−1/2(2t)

t1/2

∫ t

0
ds

J2a+1/2(2s)

s1/2
= 0. (4.27)

Changing variables s 
→ ts and interchanging the integration order shows that the integral can
be written

1

2

∫ 1

0

ds

s1/2

( ∫ ∞

0
dt J2a−1/2(t)J2a+1/2(st)

)
. (4.28)

But for 0 < s < 1 the integral over t in (4.28) vanishes [4] and consequently (4.27) is verified.
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